随着图形神经网络(GNNS)在科学机器学习中的受欢迎程度的提高,他们的培训和推理效率变得越来越重要。此外,整个深度学习领域正在朝着更广泛和更深的网络趋向于越来越多的数据大小,以至于经常遇到硬件硬件瓶颈。新兴的专业硬件平台为这个问题提供了令人兴奋的解决方案。在本文中,我们系统地介绍并选择了与GNN有关的低级操作,以用于在Pytorch几何软件框架中实施的科学计算。然后,这些在NVIDIA A100 GPU上进行了严格的基准测试,以实现多种输入值组合,包括张量稀疏性。然后,我们为每个操作分析这些结果。在高水平上,我们得出结论,在NVIDIA系统上:(1)混淆瓶颈,例如记忆效率低下通常比单独的数据稀疏性占主导地位,(2)本地Pytorch操作通常比其Pytorch几何相等等等或更具竞争力。在低至中等水平的输入数据稀疏性下,以及(3)最新的GNN体系结构中心的许多操作几乎没有对稀疏性的优化。我们希望这些结果是那些在专门硬件上开发这些操作的人的基准,我们随后的分析有助于促进对这些操作的未来软件和基于硬件的优化,从而促进总体上可扩展的GNN性能。
translated by 谷歌翻译
贝叶斯优化(BO)是一种用于计算昂贵的黑盒优化的方法,例如模拟器校准和深度学习方法的超参数优化。在BO中,采用动态更新的计算廉价替代模型来学习黑框函数的投入输出关系。该替代模型用于探索和利用输入空间的有前途的区域。多点BO方法采用单个经理/多个工人策略,以在较短的时间内实现高质量的解决方案。但是,多点生成方案中的计算开销是设计BO方法的主要瓶颈,可以扩展到数千名工人。我们提出了一种异步分配的BO(ADBO)方法,其中每个工人都会运行搜索,并异步地传达所有其他没有经理的工人的黑框评估的输入输出值。我们将方法扩展到4,096名工人,并证明了解决方案质量和更快的收敛质量。我们证明了我们从Exascale计算项目烛台基准调整神经网络超参数的方法的有效性。
translated by 谷歌翻译
Foveated imaging provides a better tradeoff between situational awareness (field of view) and resolution and is critical in long-wavelength infrared regimes because of the size, weight, power, and cost of thermal sensors. We demonstrate computational foveated imaging by exploiting the ability of a meta-optical frontend to discriminate between different polarization states and a computational backend to reconstruct the captured image/video. The frontend is a three-element optic: the first element which we call the "foveal" element is a metalens that focuses s-polarized light at a distance of $f_1$ without affecting the p-polarized light; the second element which we call the "perifoveal" element is another metalens that focuses p-polarized light at a distance of $f_2$ without affecting the s-polarized light. The third element is a freely rotating polarizer that dynamically changes the mixing ratios between the two polarization states. Both the foveal element (focal length = 150mm; diameter = 75mm), and the perifoveal element (focal length = 25mm; diameter = 25mm) were fabricated as polarization-sensitive, all-silicon, meta surfaces resulting in a large-aperture, 1:6 foveal expansion, thermal imaging capability. A computational backend then utilizes a deep image prior to separate the resultant multiplexed image or video into a foveated image consisting of a high-resolution center and a lower-resolution large field of view context. We build a first-of-its-kind prototype system and demonstrate 12 frames per second real-time, thermal, foveated image, and video capture in the wild.
translated by 谷歌翻译
机器人车使用成本图来规划无碰撞路径。与地图中的每个单元相关的成本表示感知的环境信息,这些信息通常是在经过几次反复试验后手动确定的。在越野环境中,由于存在几种类型的功能,将与每个功能相关的成本值进行手工制作是挑战。此外,不同手工制作的成本值可以导致相同环境的不同路径,而不可取的环境。在本文中,我们解决了从感知的稳健车辆路径计划中学习成本图值的问题。我们使用深度学习方法提出了一个名为“骆驼”的新颖框架,该方法通过演示来学习参数,从而为路径规划提供适应性和强大的成本图。骆驼已接受过多模式数据集的培训,例如Rellis-3D。骆驼的评估是在越野场景模拟器(MAV)和IISER-B校园的现场数据上进行的。我们还在地面流动站上执行了骆驼的现实实施。结果表明,在非结构化的地形上没有碰撞的情况下,车辆的灵活而强大的运动。
translated by 谷歌翻译
由于需要确保安全可靠的人工智能(AI),因此在过去几年中,机器伦理学受到了越来越多的关注。这两种在机器伦理中使用的主要理论是道义和功利主义伦理。另一方面,美德伦理经常被称为另一种伦理理论。尽管这种有趣的方法比流行的道德理论具有一定的优势,但由于其形式化,编纂和解决道德困境以训练良性剂的挑战,工程人工贤惠的媒介几乎没有努力。我们建议通过使用充满道德困境的角色扮演游戏来弥合这一差距。有几种这样的游戏,例如论文,生活很奇怪,主要角色遇到的情况必须通过放弃对他们所珍视的其他东西来选择正确的行动方案。我们从此类游戏中汲取灵感,以展示如何设计系统的角色扮演游戏来发展人造代理中的美德。使用现代的AI技术,例如基于亲和力的强化学习和可解释的AI,我们激励了扮演这种角色扮演游戏的良性代理,以及通过美德道德镜头对他们的决策进行检查。这种代理和环境的发展是朝着实际上正式化和证明美德伦理在伦理代理发展的价值的第一步。
translated by 谷歌翻译
我们提出了一种依赖工程点扩散功能(PSF)的紧凑型快照单眼估计技术。微观超分辨率成像中使用的传统方法,例如双螺旋PSF(DHPSF),不适合比稀疏的一组点光源更复杂的场景。我们使用cram \'er-rao下限(CRLB)显示,将DHPSF的两个叶分开,从而捕获两个单独的图像导致深度精度的急剧增加。用于生成DHPSF的相掩码的独特属性是,将相掩码分为两个半部分,导致两个裂片的空间分离。我们利用该属性建立一个基于紧凑的极化光学设置,在该设置中,我们将两个正交线性极化器放在DHPSF相位掩码的每一半上,然后使用极化敏感的摄像机捕获所得图像。模拟和实验室原型的结果表明,与包括DHPSF和Tetrapod PSF在内的最新设计相比,我们的技术达到了高达50美元的深度误差,而空间分辨率几乎没有损失。
translated by 谷歌翻译
对比性自我监督学习方法学会将图像(例如图像)映射到无需标签的情况下将图像映射到非参数表示空间中。尽管非常成功,但当前方法在训练阶段需要大量数据。在目标训练集规模限制的情况下,已知概括是差的。在大型源数据集和目标样本上进行微调进行预处理,容易在几杆方向上过度拟合,在几个弹药方面,只有少量的目标样本可用。在此激励的情况下,我们提出了一种用于自我监督的对比度学习的域适应方法,称为少数最大的学习方法,以解决对目标分布的适应问题,这些问题在几乎没有射击学习下。为了量化表示质量,我们在包括ImageNet,Visda和FastMRI在内的一系列源和目标数据集上评估了很少的最大最大速度,在这些数据集和FastMRI上,很少有最大最大的最大值始终优于其他方法。
translated by 谷歌翻译
我们引入了一种新的神经信号模型,设计用于有效的大型信号的高分辨率表示。我们的多尺度隐式神经表示(矿工)中的关键创新是通过拉普拉斯金字塔的内部表示,它提供了信号的稀疏多尺度分解,可捕获跨尺度的信号的正交部分。我们通过用小型MLP在每个尺度上代表金字塔的小差异斑块来利用拉普拉斯金字塔的优势。这使网络能够适应从粗尺度到细尺度的能力增加,仅代表具有强信号能量的信号的一部分。每个MLP的参数是从粗到细节优化的,从而在更粗糙的尺度下更快地近似,从而最终是一个非常快速的训练过程。我们将矿工应用于一系列大规模信号表示任务,包括吉吉像素图像和非常大的点云,并证明它需要少于参数的25%,33%的内存足迹和10%的计算时间和10%竞争技术(例如橡子)达到相同的表示准确性。
translated by 谷歌翻译
为医学图像评估构建准确和强大的人工智能系统,不仅需要高级深度学习模型的研究和设计,还需要创建大型和策划的注释训练示例。然而,构造这种数据集通常非常昂贵 - 由于注释任务的复杂性和解释医学图像所需的高度专业知识(例如,专家放射科医师)。为了对此限制来说,我们提出了一种基于对比学习和在线特征聚类的丰富图像特征自我监督学习方法。为此目的,我们利用各种方式的大超过100,000,000个医学图像的大型训练数据集,包括放射线照相,计算机断层扫描(CT),磁共振(MR)成像和超声检查。我们建议使用这些功能来指导在各种下游任务的监督和混合自我监督/监督制度的模型培训。我们突出了这种策略对射线照相,CT和MR:1的挑战性图像评估问题的许多优点,与最先进的(例如,检测3-7%的AUC升压为3-7%胸部射线照相扫描的异常和脑CT的出血检测); 2)与使用无预先训练(例如,83%,在培训MR扫描MR扫描中的脑转移的模型时,在训练期间训练期间的模型收敛在训练期间的培训期高达85%。 3)对各种图像增强的鲁棒性增加,例如在场中看到的数据变化的强度变化,旋转或缩放反射。
translated by 谷歌翻译
本文介绍了在自动语音识别(ASR)的语境中的声学模型的新型深度学习架构,称为MixNet。除了在LSTM-HMM中的DNN-HMM和存储器单元中的完全连接层之外,该模型使用基于专家(MOE)的混合的两个附加层。在输入时操作的第一个Moe层基于预定义的广义语音类,并且在倒数第二层操作的第二层基于自动学习的声学类。在自然语音中,不同声学类的分布在分布中是不可避免的,这导致帧间错误分类。如果经过修改的传统架构,则预期ASR精度将改进,以使其更适合于占这种重叠。 MixNet正在开发牢记这一点。通过散点图进行的分析验证了MOE确实改善了转化为更好ASR精度的类之间的分离。实验在大型词汇ASR任务上进行,表明,与传统模型,即DNN和LSTM分别提供了13.6%和10.0%的单词误差速率,即使用SMBR标准训练。与用于电话分类的现有方法相比(由EIGEN等人),我们所提出的方法产生了显着的改善。
translated by 谷歌翻译